Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation
نویسندگان
چکیده
The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The OPEN ACCESS Materials 2012, 5 2818 growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.
منابع مشابه
Seed/catalyst-free growth of zinc oxide nanostructures on multilayer graphene by thermal evaporation
We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density ver...
متن کاملEffect of Seed Layer on the Morphology of Zinc Oxide Nanorods as an Electron Transport Layer in Polymer Solar Cells
Zinc oxide has been considered as a promising semiconductor material for fabrication of transparent conductive oxides (TCOs), electronic devices, optoelectronics, and solar cells. Among the various morphologies of zinc oxide, nanorods are more widely used because of the ease of synthesis and providing a direct path for the transport of charge carriers. The electrochemical deposi...
متن کاملSelective Growth of Vertical-aligned ZnO Nanorod Arrays on Si Substrate by Catalyst-free Thermal Evaporation
By thermal evaporation of pure ZnO powders, high-density vertical-aligned ZnO nanorod arrays with diameter ranged in 80–250 nm were successfully synthesized on Si substrates covered with ZnO seed layers. It was revealed that the morphology, orientation, crystal, and optical quality of the ZnO nanorod arrays highly depend on the crystal quality of ZnO seed layers, which was confirmed by the char...
متن کاملSynthesis of Novel Double-Layer Nanostructures of SiC–WOxby a Two Step Thermal Evaporation Process
A novel double-layer nanostructure of silicon carbide and tungsten oxide is synthesized by a two-step thermal evaporation process using NiO as the catalyst. First, SiC nanowires are grown on Si substrate and then high density W(18)O(49) nanorods are grown on these SiC nanowires to form a double-layer nanostructure. XRD and TEM analysis revealed that the synthesized nanostructures are well cryst...
متن کاملHierarchical oxide nanostructures
A variety of hierarchical oxide nanostructures, including ZnO nanonails on nanowires/nanobelts, ZnO nanorods on nanobelts, comb-like ZnO nanostructures, hierarchical MgO nanowires, etc., have been synthesized by thermal vapor evaporation and condensation. Observation of these nanostructures demonstrates the diversity of the geometry of these oxides in the nanoscale range. These nanostructures m...
متن کامل